
J. Am. Chem. Soc. 1990, 112, 2419-2420 2419 

Communications to the Editor 

Co-C Homolysis and Bond Dissociation Energy Studies 
of Biological Alkylcobalamins: Methylcobalamin, 
Including a >10 , s Co-CH3 Homolysis Rate 
Enhancement at 25 0C following One-Electron 
Reduction 

Bruce D. Martin and Richard G. Finke* 

Department of Chemistry, University of Oregon 
Eugene, Oregon 97403-1253 

Received September 11, 1989 

In seeking to extend knowledge1"5 of the bond dissociation 
enthalpy (BDE) values of biologically important6 alkylcobal­
amins,7'8 we have determined the activation parameters for hom­
olysis of the Co-C bond of methylcobalamin (MeCbI9 or MeB12), 
eq 1. These parameters and the Co-Me BDE accrue additional 
fundamental significance since they allow the first direct com­
parison of normal strength vs "half-strength" M-C <J bonds (Chart 
I). Note that MeCbI is nearly ideal for such a comparison, the 
MeCbI LUMO10"12 being antibonding with respect to the key'3 

Co-C bond, and the approximately square planar corrin system 
minimizing any other structural distortions following one-electron 
reduction. 

Chart I 
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quantitative comparison of Co-CH3 homolysis rate constants for 
MeCbI (Co"1) vs (MeCbI)" (Co11)16 was previously impossible 
due to the lack of MeCbI Co-C homolysis activation parameters. 
The rate enhancement of >10" at 25 0C which we now report 
quantifies the predictable1017-19 effect of a fundamental chemical 
process: partial bond breaking. 

MeCbI + e" — (MeCbI)- ^ (Co1B125)- +Me" - ^ -
Me-Trap (2) 

Upon thermolysis of pure MeCbI20"22 (0.08-0.15 mM in 
ethylene glycol) with 2,2,6,6-tetramethylpiperidinyl-l-oxy 
(TEMPO*, 6.7-43 mM) as a CH3* radical trap, the expected1'23 

homolysis products were produced quantitatively,24 as shown by 
comparison to authentic25 Co11B12, and the authentic trapped alkyl 
TEMPO-Me9'26 (eq l).8a Standard1'27 kinetic methods showed28"30 

the reaction to be first order in [MeCbI] and zero order in 
[TEMPO*]. The observed rate constants31 were corrected8"'32 for 
the ca. 20-30% of MeCbI lacking axial-benzimidazole-base co­
ordination33 to cobalt at these temperatures.34 An Eyring plot 
gave1,27 base-on homolysis activation parameters of A#*hon = 41 
± 3 kcal mol"1 and AS*h,0„ = 24 ± 6 cal mol"1 deg"1. 

The appropriate2 cage chemistry correction35'36 yields a Co-CH3 

Electrochemical reduction of MeCbI has been used to populate 
the Co—CH3 a* orbital,14"16 thereby generating the half-strength 
Co--CH3 bond, which rapidly dissociates (eq 2). However, a 
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bond dissociation enthalpy (BDE) estimate of 37 ± 3 kcal/mol. 
This is the highest3'37 Co-C BDE yet measured,38 slightly above 
Toscano's 33 ± 2 kcal/mol BDE for Me-Co(DH)2py in bromo-
form.39 

The activation parameters allow computation of a MeCbI 
Co-CH3 homolysis rate constant at -30 0C of /ch,on = 10"19±4 s_1. 
This is the highest temperature at which the rate for (MeCbI)"" 
homolysis is sufficiently slow40 to be measurable electrochemically 
(rate constant = 1200 s"1 at -30 0C in DMF/1-propanol).16 

Comparing these two rate constants quantifies the /O22*4 hom­
olysis rate enhancement at -30 0 C due to the extra, Co--CH 3 

antibonding electron in (MeCbI)*". 
Informative rate comparisons at higher temperatures can be 

made if one compares MeCbI to methylcobinamide,9 MeCW+ (the 
benzimidazole-base-free form of MeCbI; the lack of the axial base 
in MeCbi+/MeCbi* slows the Co-C cleavage rates enough to make 
them measurable electrochemically at 25 0C). Rigorously, the 
MeCbi+/MeCbi' electrochemical data16 serve as a lower limit*0 

to the rates for MeCbI'" Co-CH3 cleavage at other temperatures. 
That is, the rate enhancements that follow are lower limits to the 
true values. (If desired, the Co-C cleavage rates from MeCbi" 
and MeCbI'" can be taken as equivalent40 within the estimated 
±102"3 error bars, and given the large rate enhancements ob­
served.) 

The electrochemically derived,16 temperature-dependent MeCbi" 
Co-CH3 homolysis rates, /ch,

41 provide the activation parameters 
\H* = 19 (±1) kcal/mol and AS* = 21 (±3) eu. Hence at 25 
0C the MeCbi" kh is 4400 s"1, which, compared to our MeCbI 
ĥ,on = 10~12±3 s"1, demonstrates a rate enhancement o /> /0 1 5 ± 3 

at 25 °C. The rate enhancement is still >1013 or >10" at even 
90 or 135 0C, respectively. 

Comparing activation parameters for reduced (<T)2(<T*)' MeCbi" 
and (<r)2 MeCbI suggests that an antibonding electron lowers the 
Co-C bond strength by more than half (i.e., from 37 kcal mol"1 

down to approximately42"44 12 kcal mol"1)- The effect of the 
M--C antibonding electron—the first such measurement for any 
M-C/M-C - " pair—is impressive.42 
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times faster than MeCbi' at -30 0C (1200 s"1 and 2.7 s"1, respectively).16 (b) 
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(41) (a) The Co-CH3 cleavage mechanism we expect for reduced alkyl-
corrins differs from that presented in the electrochemical literature14"16 by 
incorporating reversible Co(II)—CH3 cleavage4'0 followed by CH3' trapping, 
Me[Co(II)corrin]- ^ Co(I)" + CH3", then CH3' + trap — CH3-trap, kotsi 
= kh,apparent = a composite (with the reverse of the first step probably favored 
by the preferred, base-off form4,c of Co(I)). Fortunately, the solvent mixture 
DMF/1-propanol is apparently serving as a trap (a H" source as previously 
noted),16 thereby preventing Co(I) + Me" recombination (and thus kKmarcm 
*° *turuc = ĥ in DMF/1-propanol, but not in H2O'4). This mechanism, the 
evidence for it, and its implications will be discussed in a full paper.8" (b) The 
trapping of a R" by a diamagnetic metal has precedent: Collman, J. P.; 
Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of 
Organotransition Metal Chemistry; University Science Books: Mill Valley, 
CA, 1987; pp 314-315. Finke, R. G.; Keenan, S. R.; Watson, P. L. Or-
ganometallics 1989, 8, 263-277, especially p 269 and footnote 26. (c) Lexa, 
D.; Saveant, J.-M. J. Am. Chem. Soc. 1976, 98, 2652. 

(42) Radical-cage effects,2 although undoubtedly present in khm (Fc as­
sumed ^ l ) 3 5 and possibly ,̂apparent (Fc assumed43 =* 1, but arguably as small 
as ~0),4U '43 will not influence the conclusions in this paper (that are based 
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It is of interest to consider the possible biological relevance of 
this mechanism for greatly enhancing M-C cleavage. Extremely 
labile M-alkyls are hereby predicted for systems isoelectronic to 
d7 Co(II)—CH3, notably any d7 TSTi(III)-alkyls related to cofactor 
p43o-45 C"n t n e other hand, rather stable Co-methyl bonds (BDE 
= 37 kcal/mol) that are not reducible by biological reductants*6 

are the apparent rule for d6 Co-CH3 corrinoids. This latter 
statement is supported by the work of Ragsdale and co-workers, 
who have recently tested for, but found no evidence of, reductive 
cleavage of a d6 Co(III)-CH3 bond in the corrinoid/4Fe-4S-
containing protein which serves as the methyl carrier protein in 
the acetyl-CoA pathway of Clostridium thermoaceticum.1,1 

Perhaps it is the enormous stability difference between a d7 

Ni(III)-CH3 and a d6 Co(III)-CH3 that Nature is exploiting. 
Consistent with the above, the mechanism responsible for the 

observed enzymatic rate enhancement1 of Co-C homolysis in 
AdoCbl probably does not involve (AdoCbl)"".6'46 Our reasoning 
behind this statement, and a parallel analysis of the rate en­
hancement following AdoCbl reduction, is presented elsewhere.46 
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Experiments in several laboratories have shown that electron 
transfer (ET) can take place at appreciable rates over long dis­
tances (>10 A) in organic and inorganic molecules1"6 and in 
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